Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 7(4)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816920

RESUMO

Infection by Hepatitis C virus (HCV) can lead to liver cirrhosis/hepatocellular carcinoma and remains a major cause of serious disease morbidity and mortality worldwide. However, current treatment regimens remain inaccessible to most patients, particularly in developing countries, and, therefore, the development of a novel vaccine capable of protecting subjects from chronic infection by HCV could greatly reduce the rates of HCV infection, subsequent liver pathogenesis, and in some cases death. Herein, we evaluated two different semi-synthetic archaeosome formulations as an adjuvant to the E1/E2 HCV envelope protein in a murine model and compared antigen-specific humoral (levels of anti-E1/E2 IgG and HCV pseudoparticle neutralization) and cellular responses (numbers of antigen-specific cytokine-producing T cells) to those generated with adjuvant formulations composed of mimetics of commercial adjuvants including a squalene oil-in-water emulsion, aluminum hydroxide/monophosphoryl lipid A (MPLA) and liposome/MPLA/QS-21. In addition, we measured the longevity of these responses, tracking humoral, and cellular responses up to 6 months following vaccination. Overall, we show that the strength and longevity of anti-HCV responses can be influenced by adjuvant selection. In particular, a simple admixed sulfated S-lactosylarchaeol (SLA) archaeosome formulation generated strong levels of HCV neutralizing antibodies and polyfunctional antigen-specific CD4 T cells producing multiple cytokines such as IFN-γ, TNF-α, and IL-2. While liposome/MPLA/QS-21 as adjuvant generated superior cellular responses, the SLA E1/E2 admixed formulation was superior or equivalent to the other tested formulations in all immune parameters tested.

2.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540595

RESUMO

Current evidence supports a protective role for virus-neutralizing antibodies in immunity against hepatitis C virus (HCV) infection. Many cross-neutralizing monoclonal antibodies have been identified. These antibodies have been shown to provide protection or to clear infection in animal models. Previous clinical trials have shown that a gpE1/gpE2 vaccine can induce antibodies that neutralize the in vitro infectivity of all the major cell culture-derived HCV (HCVcc) genotypes around the world. However, cross-neutralization appeared to favor certain genotypes, with significant but lower neutralization against others. HCV may employ epitope masking to avoid antibody-mediated neutralization. Hypervariable region 1 (HVR1) at the amino terminus of glycoprotein E2 has been shown to restrict access to many neutralizing antibodies. Consistent with this, other groups have reported that recombinant viruses lacking HVR1 are hypersensitive to neutralization. It has been proposed that gpE1/gpE2 lacking this domain could be a better vaccine antigen to induce broadly neutralizing antibodies. In this study, we examined the immunogenicity of recombinant gpE1/gpE2 lacking HVR1 (ΔHVR1). Our results indicate that wild-type (WT) and ΔHVR1 gpE1/gpE2 antigens induced antibodies targeting many well-characterized cross-genotype-neutralizing epitopes. However, while the WT gpE1/gpE2 vaccine can induce cross-genotype protection against various genotypes of HCVcc and/or HCV-pseudotyped virus (HCVpp), antisera from ΔHVR1 gpE1/gpE2-immunized animals exhibited either reduced homologous neutralization activity compared to that of the WT or heterologous neutralization activity similar to that of the WT. These data suggest that ΔHVR1 gpE1/gpE2 is not a superior vaccine antigen. Based on previously reported chimpanzee protection data using WT gpE1/gpE2 and our current findings, we are preparing a combination vaccine including wild-type recombinant gpE1/gpE2 for clinical testing in the future.IMPORTANCE An HCV vaccine is an unmet medical need. Current evidence suggests that neutralizing antibodies play an important role in virus clearance, along with cellular immune responses. Previous clinical data showed that gpE1/gpE2 can effectively induce cross-neutralizing antibodies, although they favor certain genotypes. HCV employs HVR1 within gpE2 to evade host immune control. It has been hypothesized that the removal of this domain would improve the production of cross-neutralizing antibodies. In this study, we compared the immunogenicities of WT and ΔHVR1 gpE1/gpE2 antigens as vaccine candidates. Our results indicate that the ΔHVR1 gpE1/gpE2 antigen confers no advantages in the neutralization of HCV compared with the WT antigen. Previously, we showed that this WT antigen remains the only vaccine candidate to protect chimpanzees from chronic infection, contains multiple cross-neutralizing epitopes, and is well tolerated and immunogenic in humans. The current data support the further clinical development of this vaccine antigen component.


Assuntos
Hepacivirus/imunologia , Antígenos da Hepatite C/imunologia , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Células CHO , Cricetulus , Feminino , Cobaias , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Camundongos , Testes de Neutralização , Vacinas Sintéticas/imunologia
3.
Can Liver J ; 1(3): 130-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-35991323

RESUMO

New effective drugs to treat hepatitis C (HCV) promise to cure nearly all patients, but relying solely on antivirals without an effective vaccine has been ineffective in eliminating all other infectious diseases. A prophylactic HCV vaccine needs to be developed. Along with increased screening and drug coverage, an effective vaccine could make it possible to meet the World Health Organization's target to eliminate HCV by 2030. On the basis of recent knowledge of immune correlates of protection combined with the demonstrated immunogenicity and protective animal efficacies of various HCV vaccine candidates, there is a possibility that a prophylactic HCV vaccine is on the horizon. This article summarizes the current status of a prophylactic HCV vaccine. Elicitation of cross-neutralizing antibodies and broad cellular immune responses are likely needed to overcome this highly diverse virus.

4.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795422

RESUMO

A recombinant strain HCV1 (hepatitis C virus [HCV] genotype 1a) gpE1/gpE2 (E1E2) vaccine candidate was previously shown by our group to protect chimpanzees and generate broad cross-neutralizing antibodies in animals and humans. In addition, recent independent studies have highlighted the importance of conserved neutralizing epitopes in HCV vaccine development that map to antigenic clusters in E2 or the E1E2 heterodimer. E1E2 can be purified using Galanthis nivalis lectin agarose (GNA), but this technique is suboptimal for global production. Our goal was to investigate a high-affinity and scalable method for isolating E1E2. We generated an Fc tag-derived (Fc-d) E1E2 that was selectively captured by protein G Sepharose, with the tag being removed subsequently using PreScission protease. Surprisingly, despite the presence of the large Fc tag, Fc-d E1E2 formed heterodimers similar to those formed by GNA-purified wild-type (WT) E1E2 and exhibited nearly identical binding profiles to HCV monoclonal antibodies that target conserved neutralizing epitopes in E2 (HC33.4, HC84.26, and AR3B) and the E1E2 heterodimer (AR4A and AR5A). Antisera from immunized mice showed that Fc-d E1E2 elicited anti-E2 antibody titers and neutralization of HCV pseudotype viruses similar to those with WT E1E2. Competition enzyme-linked immunosorbent assays (ELISAs) showed that antisera from immunized mice inhibited monoclonal antibody binding to neutralizing epitopes. Antisera from Fc-d E1E2-immunized mice exhibited stronger competition for AR3B and AR5A than the WT, whereas the levels of competition for HC84.26 and AR4A were similar. We anticipate that Fc-d E1E2 will provide a scalable purification and manufacturing process using protein A/G-based chromatography. IMPORTANCE: A prophylactic HCV vaccine is still needed to control this global disease despite the availability of direct-acting antivirals. Previously, we demonstrated that a recombinant envelope glycoprotein (E1E2) vaccine (genotype 1a) elicited cross-neutralizing antibodies from human volunteers. A challenge for isolating the E1E2 antigen is the reliance on GNA, which is unsuitable for large scale-up and global vaccine delivery. We have generated a novel Fc domain-tagged E1E2 antigen that forms functional heterodimers similar to those with native E1E2. Affinity purification and removal of the Fc tag from E1E2 resulted in an antigen with a nearly identical profile of cross-neutralizing epitopes. This antigen elicited anti-HCV antibodies that targeted conserved neutralizing epitopes of E1E2. Owing to the high selectivity and cost-effective binding capacity of affinity resins for capture of the Fc-tagged rE1E2, we anticipate that our method will provide a means for large-scale production of this HCV vaccine candidate.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/biossíntese , Hepatite C/prevenção & controle , Proteínas Recombinantes de Fusão/biossíntese , Proteínas do Envelope Viral/biossíntese , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/química , Antígenos Virais/química , Antígenos Virais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cromatografia em Agarose/métodos , Reações Cruzadas , Epitopos/química , Epitopos/imunologia , Hepacivirus/química , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/química , Humanos , Soros Imunes/química , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Camundongos , Testes de Neutralização , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Vacinação , Vacinas Sintéticas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/biossíntese
5.
PLoS One ; 6(11): e27870, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114717

RESUMO

The gammaretroviruses xenotropic murine leukemia virus (MLV)-related virus (XMRV) and MLV have been reported to be more prevalent in plasma and peripheral blood mononuclear cells of chronic fatigue syndrome (CFS) patients than in healthy controls. Here, we report the complex analysis of whole blood and plasma samples from 58 CFS patients and 57 controls from Canada for the presence of XMRV/MLV nucleic acids, infectious virus, and XMRV/MLV-specific antibodies. Multiple techniques were employed, including nested and qRT-PCR, cell culture, and immunoblotting. We found no evidence of XMRV or MLV in humans and conclude that CFS is not associated with these gammaretroviruses.


Assuntos
Anticorpos Anti-Idiotípicos/sangue , Anticorpos Antivirais/sangue , DNA Viral/genética , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/virologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia , Western Blotting , Canadá , Estudos de Casos e Controles , Síndrome de Fadiga Crônica/sangue , Feminino , Humanos , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Retroviridae/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Tumorais por Vírus/diagnóstico , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...